skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Enright, Sean"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The objective of this paper is to investigate the post-earthquake thermal-mechanical response of cold-formed steel (CFS) members. A 10-story cold-formed steel building (CFS-NHERI) will undergo seismic tests, followed by post-earthquake live fire tests. To support the fire test setup, computational models are developed to simulate the impact of varying post-earthquake damage levels on the fire response of the structure. As a panelized system, damage to different finish and nonstructural systems significantly affects the thermal behavior and load-bearing capacity of the CFS components. The computational models integrate the modeling capability in CUFSM and SAFIR for the elastic buckling, heat transfer, and transient structural analysis under fire. A parametric analysis considering different seismic damage levels is conducted to study the buckling and strength behavior of the CFS members under fire-induced nonuniform temperature fields. These pre-test models inform the duration and severity of the fire tests to maintain structural stability while achieving substantial thermal loading on the CFS load-bearing system. They also provide guidance for the sensor layout plan for the fire tests. This study advances methods for fire resilience of thin-walled CFS structures under multi-hazard scenarios. 
    more » « less
    Free, publicly-accessible full text available April 4, 2026